Using amsorb to detect dehydration of CO2 absorbents containing strong base.

نویسندگان

  • Erich Knolle
  • Wolfgang Linert
  • Hermann Gilly
چکیده

BACKGROUND Because Amsorb changes color when it dries, the authors investigated whether Amsorb combined with different strong base-containing carbon dioxide absorbents signals dehydration of such absorbents. METHODS Five different carbon dioxide absorbents (1,330 g) each topped with 70 g of Amsorb were dried in an anesthesia machine (Modulus CD, Datex-Ohmeda, Madison, WI) with oxygen (Amsorb layer at the fresh gas inflow site). As soon as a color change was detected in the Amsorb, the authors tested the samples for a change in weight and carbon monoxide formation from 7.5% desflurane or 4% isoflurane. In a different experiment with the five absorbents, Amsorb was layered at the drying gas outflow site. In further experiments, the authors tested for a color change in Amsorb from drying and rehydrating and from drying with nitrogen. Finally, they dried a mixture of Amsorb and 1% NaOH and examined it for color change. RESULTS In the experiments with Amsorb layered at the inflow, the Amsorb changed color when the water content of the samples was only marginally reduced (to a mean 13.6%), and no carbon monoxide formed. With Amsorb layered at the outflow, it changed color when the mean water content of the samples was reduced to 8.8%, and carbon monoxide formation was detected to varying degrees. The color change was independent of the drying gas and could be reversed by rehydrating. Adding NaOH to Amsorb prevented a color change. CONCLUSIONS Dehydration in strong base-containing absorbents can reliably be indicated before carbon monoxide is formed when Amsorb is layered at the fresh gas inflow. The authors assume that the indicator dye in Amsorb changes color on drying because of the absence of strong base in this absorbent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lack of degradation of sevoflurane by a new carbon dioxide absorbent in humans.

BACKGROUND Potent inhaled anesthetics degrade in the presence of the strong bases (sodium hydroxide or potassium hydroxide) in carbon dioxide (CO2) absorbents. A new absorbent, Amsorb (Armstrong Medical Ltd., Coleraine, Northern Ireland), does not employ these strong bases. This study compared the scavenging efficacy and compound A production of two commercially available absorbents (soda lime ...

متن کامل

Carbon monoxide production from desflurane and six types of carbon dioxide absorbents in a patient model.

BACKGROUND Desflurane is known to produce high concentrations of carbon monoxide (CO) in desiccated sodalime or Baralyme (Allied Healthcare Products, St. Louis, MO). Desiccated absorbents without strong bases like potassium hydroxide or sodium hydroxide are reported to produce less or no CO at all. The purpose of this study is to compare the concentration of CO in an anesthesia circuit for desf...

متن کامل

Only carbon dioxide absorbents free of both NaOH and KOH do not generate compound A during in vitro closed-system sevoflurane: evaluation of five absorbents.

BACKGROUND Insufficient data exist on the production of compound A during closed-system sevoflurane administration with newer carbon dioxide absorbents. METHODS A modified PhysioFlex apparatus (Dräger, Lübeck, Germany) was connected to an artificial test lung (inflow at the top of the bellow approximately/= 160 ml/min CO2; outflow at the Y piece of the lung model approximately/= 200 ml/min, s...

متن کامل

Carbon dioxide absorbents containing potassium hydroxide produce much larger concentrations of compound A from sevoflurane in clinical practice.

UNLABELLED We investigated the concentrations of degraded sevoflurane Compound A during low-flow anesthesia with four carbon dioxide (CO(2)) absorbents. The concentrations of Compound A, obtained from the inspiratory limb of the circle system, were measured by using a gas chromatograph. In the groups administered 2 L/min fresh gas flow with 1% sevoflurane, when the conventional CO(2) absorbents...

متن کامل

Inspiratory Carbon Monoxide and Compound A Concentrations During Desflurane and Sevoflurane Anesthesia in Humans: An Observational Study

All modern vapor anesthetics are capable of carbon monoxide (CO) production as a result of interaction with desiccated strong base containing carbon dioxide absorbents. In desiccated absorbents, desflurane produces the highest concentrations of CO. Sevoflurane is known to produce the nephrotoxic compound A (CA) independently from water content of the carbon dioxide absorbent. The purpose of thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Anesthesiology

دوره 97 2  شماره 

صفحات  -

تاریخ انتشار 2002